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Abstract---Striations on a pebble are interpreted as resulting from slip due to either a homogeneous stress state or 
a small homogeneous coaxial deformation in the matrix. In terms of stress, striations are assumed to be parallel to 
the applied shear stress. In terms of strain, striations are considered to be parallel to the relative tangential 
displacement between the pebble and adjacent matrix particles. Slip on the surface of a spherical rigid body 
enclosed in a deformable matrix (brittle or ductile) is theoretically analysed for different stress and strain 
regimes. The analysis predicts the topology of the resulting striations and singularity distribution on the sphere. 

Both in terms of stress and strain, the tangential vector field on the sphere's surface derives from a potential 
function proportional to the magnitude of the normal vector field. Tangential and normal vectors represent either 
shear and normal stresses, or displacement components (in terms of strain). The plot of continuous curves 
parallel to striations (integral curves) and of equipotential curves on the sphere, allows simultaneously the 
magnitude and orientation of the tangential and normal vector fields to be visualized. Close to singular points, the 
integral curves correspond to power laws and the equipotentials correspond to conic sections. 

This theoretical analysis allows graphical method for estimating the stress ratio (02 - aa)/(ot - 03) from 
striated faults to be proposed, once the orientations of the principal stress directions are known (i.e. by means of 
other graphical methods). 

INTRODUCTION 

THIS work concerns the study of deformation observed 
in conglomerates from sedimentary basins, such as fore- 
land belt molassic basins. It is focused on the analysis 
and interpretation of striated pebbles that are found in 
these conglomerates. 

Conglomerate beds next to a fault often display an 
internal deformation that is linked to the kinematics of 
the fault. The intensity and style of deformation, vary as 
a function of the distance to the fault plane (Combes 
1984): near the fault plane, pebbles are often intensely 
fractured (cut into sections). The fractures are often 
dynamically compatible with movement observed along 
the main fault plane (Eidelman & Reches 1992). Away 
from the fault plane, deformation in the conglomerate 
decreases rapidly and concentrates in the matrix and at 
the contact between the matrix and the pebbles. Dis- 
placement on the matrix-pebble interface is manifested 
by striations, which result from the relative movement of 
objects included in the matrix (e.g. quartz grains) that 
are positioned near the pebble. 

This work concerns the analysis of striated pebbles 
when deformations are small. It is considered that peb- 
bles behave as rigid objects. Use is made of the notion 
that the information available from striations over the 
surface of a pebble can be compared with a population of 
striated faults, slickolites and tension gashes covering all 
possible orientations (Combes 1984, Schrader 1991). 
Thus, the study of striated pebbles allows the character- 
ization of the local and regional stress and strain states, 
as shown by several microtectonic studies carried out in 
deformed conglomerate beds (Estevez et al. 1976, Cam- 

predon et al. 1977, Combes 1984, Casagrande Fioretti 
1985, Petit etal. 1985, Schrader 1988, Srranne 1988, Ritz 
1991). When clasts come from recent deposits, they 
represent particularly interesting tectonic objects for 
analysing active fault kinematics (Combes 1984, Ritz 
1991). 

In this paper a theoretical study of striated pebbles is 
performed by comparison with models of striations on a 
spherical body, for different stress and strain regimes 
(this simple case has the advantage that it is entirely 
treated analytically). For the sake of clarity, theoretical 
formulation is done independently from the analysis of 
the results. The results of this study can be used to 
analyse similar geological problems at much larger scale: 
i.e. the interpretation of late shear zones observed 
around a rigid intrusion surrounded by more deformable 
rocks that act as a 'matrix', and even the analysis of 
stretching lineations around an arcuate lithospheric slab 
subducted below a more deformable plate. 

The analysis of striations on a spherical body has been 
approached in two complementary ways, each depend- 
ing on the mechanical behaviour of the matrix. 

Matrix showing brittle behaviour 

The first approach that is proposed is inspired from 
the methods that exist in brittle tectonics. It consists of 
interpreting striations observed on the pebble's surface 
in terms of stress, by supposing that the matrix that 
surrounds the pebble is subjected to a homogeneous 
stress state defined by a stress tensor. Although this 
assumption is not entirely valid, it constitutes a good 
approximation when deformations are small (Combes 
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Fig. 1. Interpretation of the orientation of striations on the surface of a pebble, as a function of (a) stress regime and (b) 

strain regime. 

1984, Casagrande Fioretti 1985, Srranne 1988, Ritz 
1991). 

A priori this approach can be applied to conglomer- 
ates whose matrix is well consolidated yet less resistant 
than clasts. In such cases the matrix often displays brittle 
behaviour and deformation is concentrated at the 
matrix--clast interface. Striations observed on the sur- 
face of the pebble can then be interpreted in terms of a 
simple mechanical model: the orientation of the stri- 
ation at a point has the same direction as the applied 
shear stress in that point. 

Supposing that the stress tensor is constant around the 
pebble, the applied stress at a point m of the pebble 
surface can easily be calculated (Fig. la): 

Let n be the unit vector perpendicular to the pebble 
surface at m, and pointing outwards, defined with re- 
spect to an orthonormal reference frame S = (Sx, Sy, Sz). 
The applied stress F at m is defined by F = T n, where T 
is a symmetrical 3 x 3 matrix representing the stress 
tensor in reference frame S. 

This mechanical model is commonly used in brittle 
tectonics to interpret sliding along faults (Anderson 
1951, Wallace 1951, Bott 1959, Carey & Brunier 1974), 
and to calculate parameters of the stress tensor from 
striated faults by means of inverse methods (i.e. Armijo 
& Cisternas 1978, Angelier 1979, 1990, Carey 1979, 
Etchecopar et al. 1981, Gephart & Forsyth 1984, 
Michael 1984, Reches 1987, Sassi & Carey-Gailhardis 
1987, Galindo-Zaldivar & Gonzalez-Lodeiro 1988, 
Rivera & Cisternas 1990, Fleischmann & Nemcok 1991, 
Will & Powell 1991). Using this model, many authors 
have calculated parameters of the stress tensor at the 
outcrop scale, from slip data measured in conglomer- 
ates. Some of them have calculated the orientation of 
the principal compressive axis from penetrative stri- 
ations (slickolites) measured on the pebble surface 
(Estevez et al. 1976, Campredon et al. 1977). Others 
have treated the surface of striated pebbles as micro- 
faults, and they have calculated the orientation of the 
stress principal axes and the shape ratio of the stress 
ellipsoid (Combes 1984, Casagrande Fioretti 1985, Srr- 
anne & Srguret 1987, Ritz 1991). 

These previous studies have been made on con- 
glomerates from both shallow and deeper structural 
levels containing clasts of varying lithologies and sizes, 
and clayey-sandy matrices moderately to well 
cemented. 

Matrix showing ductile behaviour 

The second approach consists of interpreting the stri- 
ations on pebbles as a function of the strain of the matrix 
surrounding the pebble and of the rotation of the peb- 
ble. A priori this approach can be applied to conglomer- 
ates whose matrix behaviour is ductile. 

The following definitions are necessary. 
t Let S -- (Sx, Sy, Sz) and S' = (S', Sy, S~) be two 

orthonormal reference frames whose origin coincides 
with the centre of gravity of the pebble. It is supposed 
that the orientation of S is fixed with respect to the 
geographic reference frame and S' is fixed with respect 
to the pebble, the two systems being parallel before 
deformation. Thus, the orientation of S' can change if 
the pebble rotates during deformation (Fig. lb). 

The assumption is made that the average deformation 
in the conglomerate is homogeneous. Again, this 
assumption is justified for small deformations (Schrader 
1988). However, at smaller scales strain is hetero- 
geneous because of the rheological contrast between the 
clasts and the matrix: i.e. away from the clast matrix, the 
strain is approximately homogeneous, and close to the 
clast matrix particles are restricted to move tangentially 
to its surface. The average deformation in the con- 
glomerate layer is characterised in reference frame S by 
a transformation matrix L whose determinant is positive 
(Germain 1986). An orthonormal matrix R and two 
symmetrical positively defined matrices V and W can be 
associated with L, such that L = R V  = WR. R represents 
the rotational component of L, and V and W the pure 
deformation components before or after rotation, re- 
spectively (Germain t986). 

Let 1) be the transformation matrix between systems 
S' and S after deformation. Thus f~ is orthogonal and it 
characterizes the rigid rotation of the pebble. Let m be a 
material point of the pebble surface and Po the vector 
indicating the initial position of m in S (Fig. la). After 
deformation, point m will move to a new position Pl = l l  
Po in system S (Fig. lb). If the matrix and the pebble had 
the same competence, the small-scale strain pattern 
would be homogeneous and the particles of the matrix 
that are in contact with point m at the initial state, would 
move to point P2 = L Po in S. Let Ap = P2 -- Pl = (L - 1)) 
Po be the displacement vector between the two points 
defined previously (Fig. lb). It is supposed that the 
orientation of the striation at m has the same direction as 
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Fig. 2. (a) Spherical co-ordinates reference frame used to locate the position of points on the surface o f the  unitary sphere 
(modified from Spiegel 1987). (cO, e~b, ep) = local or thonormal  reference frame. (b) Decomposit ion of vector F associated 

with a point m on the surface of the sphere,  in a normal component  F n and a tangential component  F~, 

the projection of Ap on the surface of the pebble. Ap can 
be expressed as a function of the co-ordinates of point m 
in S in the final state: 

Ap = (L - ~ ) n r p l  = D Pl, (1) 

where the operator  D defines the displacement tensor 
(De Paor  1983) between the pebble at the final state and 
the matrix that surrounds it. 

Several models can be considered to evaluate the 
differential rotation of the pebble in the matrix. Etche- 
copar & Malavieille (1987) have proposed that the 
rotation of a rigid object in a more deformable matrix is 
such that gaps and boundary sliding are minimized. The 
rotation of the object, associated with an incremental 
deformation in the matrix is defined by the minimization 
of a function. This function depends on the sum of the 
squares of the distance between the object and the 
matrix, for regularly spaced points located at the surface 
of the rigid object. It can be supposed that the rotation of 
a spherical pebble included in a homogeneous ductile 
matrix that undergoes a non-coaxial deformation 
regime, is characterized by matrix R which is the ro- 
tational component  of transformation matrix L. Conse- 
quently 

D = (L - R)R r =  W -  I. (2) 

The particular case in which the pebble does not 
rotate is quite interesting because striations can be 
directly interpreted in terms of matrix L (i.e. D = 
L - /).  This case can occur when the deformation 
history is coaxial, if the pebble is symmetric and if its 
symmetry axes are parallel to the principal strain axes. 
The existence of other  pebbles in the matrix can also 
limit the rotation of the pebble independently of the 
deformation regime. 

THEORETICAL ANALYSIS OF STRIATIONS ON 
A SPHERICAL PEBBLE 

For the two situations set forth above, the striation 
field on a spherical pebble will now be calculated for 
different stress and displacement tensors. In the in- 
terpretation in terms of stress, the orientation of the 

striation at a point m of the pebble surface depends on 
the orientation of the vector normal to the surface at m; 
in the interpretation in terms of strain, it depends on the 
co-ordinates of point m with respect to a reference frame 
whose origin is located on the centre of gravity of the 
pebble. The surface of the sphere is particularly interest- 
ing, because the normal vector at point m is parallel to 
the vector indicating the position of m with respect to the 
centre of the sphere. A direct consequence of this 
property is that striation fields associated with identical 
stress or displacement tensors are equal. Knowing that 
the stress tensor is symmetrical by definition, the 
analogy between striation fields can only be drawn if 
matrix D that was previously defined, is also symmetric. 
A particular case that satisfies this condition is the 
coaxial deformation history, where it is supposed that 
for a spherical pebble ~ = I (identity matrix, no ro- 
tation). The analogy between striation fields is only valid 
for the surface of the sphere. For any other geometrical 
form, the striation fields deduced from the two hypotheses 
are different. However ,  this simple case assists our 
understanding striation patterns on natural examples. 
The problem concerning the striation field on the surface 
of the sphere, associated with a stress tensor or a 
displacement tensor in coaxial strain regime is t reated 
analytically. 

Striations associated with a symmetrical tensor 

Formulation of  the model. Let  Tbe  a symmetric tensor 
in its principal reference frame S. T represents a stress 
tensor as well as a displacement tensor in a coaxial strain 
regime such that the pebble does not rotate. T can be 
expressed by means of a diagonal matrix: 

T = ,~y , ( 3 )  

0 )-z 

where 2x, 2y and ;tz are the eigenvalues of the tensor in 
the directions Sx, Sy and Sz, respectively. Let  C be the 
surface of the unit sphere centred with respect to S, and 
let m be a point in this surface (Fig. 2). Vector n indicates 
the position of m in S, and represents the unit vector 
perpendicular to C at m. n can be defined in spherical co- 
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ordinates by means of angles ~ and O, which represent 
the azimuth of n and its inclination with respect to the 
vertical axis, respectively (Fig. 2a): 

[sin (0 )  cos (~b)] 
n = [sin (19) sin (~b)[. (4) 

L cos (19) J 
A vector F can be associated with each point m in C: 

[2x sin (19) cos (~)] 
F =  Tn =/ ; ty  sin (19) sin (~)1. (5) 

t   cos(19) J 
F represents either the applied stress on m, or the 

displacement of particles adjacent to point m, depending 
on the considered interpretation (Fig. 2b). F can be 
decomposed into a component Fn, which is normal to 
the surface of the sphere, and a tangential component 
F,, such that F = F n + F~. The magnitudes of vectors F n 

and F~ are Fn and F~, respectively. Let (eO,ed~,ep) be the 
local orthonormal reference frame in spherical co- 
ordinates, defined in terms of 19 and $ (Fig. 2a): 

[cos(o cos(  l 
e O  = [ cos ( O ) s i n ( ~ ) / '  

[ - s in  (19) J 

[-sin (~)] 
e* = [ C°o(~) j , 

[sin (O) cos ($)] 
ep = [sin (19) sin (¢0[. (6) 

t cos (19) J 

The transformation matrix between systems (Sx, Sy, 
Sz) and (eO,e~b,ep) is defined by: 

l °s cos  , cos l (19) (19) sin (q~) -sin(19)]  
M = - s in  (q~) cos (0) 0 . (7) 

sin (19) cos (~0) sin (19) sin (q~) cos (19) 

Notice that the lines of this matrix correspond to 
vectors eO, e~  and ep. 

Vector F can be expressed in system (eO, e~ ,  ep), 
making use of transformation matrix M: 

F' = M F  

sin (0)  cos (0) (2  x cos 2 (~) + 2y sin 2 (~b) - 2~) ] 
= [ (;ty - 2x) sin (O) cos (~) sin (~) [ 

L()~x COS 2 (~)) + ,~y sin 2 ($)) sin 2 (O) + 3. z cos 2 (19) J 

Feo] 

LF~oJ 
(8) 

where F~o is the component of F~ in the dip direction, 
F'_~ is the component of F~ in the azimuth direction and 
Fep is equal to Fn (Fig. 3). The set of vectors F~ defines a 
vector space, tangent to the sphere (for the definition of 
tangent vector space see Arnold 1988, Chap. 5, Munkres 
1991, Chap. 6). The orientation of vector F~ on the plane 

Fig. 3. Components of vector F in co-ordinate system (eO, ed~, el)). 

that is tangent to the sphere at m, can be calculated by 
noting that: 

tan (a) - F~° 
F~¢ 

I cos( )] 
= cos (13) cos (¢~) sin (~) sin (~)J 

= v(19, ~), (9) 

such that 

(;ty - 2~), 
Rx = (2y - 2~) 

where a is the clockwise angle between e~  and vector F~ 
(Fig. 3). The previous equation shows that the orien- 
tation of F~ in a point m of the unit sphere depends on the 
orientation of unit vector n and on Rx, which defines a 
ratio between the tensor deviators. This result is consist- 
ent with the Bott principle (1959), which states that the 
orientation of the striation on a fault plane depends on 
the orientation of the stress principal axes and on a ratio 
that characterizes the form of the stress ellipsoid. 

A direction field ~ is defined on the surface of the 
sphere, by associating to each one of its points a straight 
line that is parallel to F~. By definition, these lines are 
tangent to the sphere and their directing coefficient in 
the plane (ed~,eO) is given by v(O,~). The integral 
curves of the direction field ~ on the surface of the 
sphere will be calculated. By definition F~ is tangent to 
integral curves in every point of the sphere (Fig. 4a) (for 
the definition of integral curve see Arnold 1988, Chap. 
1, pp. 14-17). 

The differential of distance in spherical co-ordinates is 
defined by (Fig. 4b): 

ds = dp el) + p dO eO + p sin (O) d~ t ~  

tan (a) - p dO 
p sin (O) d~b 

= cos (O) cos (~) sin (~) sin (~)J (10) 

This differential equation can be solved by separating 
variables O and ~ and integrating: 
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~ ~rpsin(O) d~ ~~pdO_ 

Fig. 4. (a) Example of vector field (F~), tangent to the surface of the 
sphere, such that ,I 1 < 23 and ~-2 = (,tl + 23)/2. Continuous curves are 
parallel to the orientation of vector F~ in every point of the sphere. 
These curves are called integral curves. (b) Lengths of arc differentials 

in spherical co-ordinates (modified from Spiegel 1987). 

dO R x cos (~) 
I cos (O) sin (O) = I lcos (~) sin (~) ~ ]  d~b. (11) 

This integral is evaluated in Appendix A, and the 
resulting equation that defines the integral curves is 
given by: 

tan (O = +kl  lsin (q~) Ig -llcos -Rx 

= +-k 1 [sin ( )l(xx-x,)/(a -ax)lcos 
kl > O, @ ~ n3r/2, (12) 

where kl is a constant of integration. 

Analysis o f  integral curves for  different symmetric tensors 

Many authors have studied slickenline patterns on the 
surface of the sphere linked to symmetrical and non- 
symmetrical tensors (i.e. Wallace 1951, Hoeppener  et al. 
1983, Aleksandrowski 1985, Schader 1988, Twiss et al. 
1991). However ,  analytical equations for integral curves 
have not been calculated. Thus, in this section integral 
curves are derived corresponding to the different stress 
and coaxial deformation states that can be found in the 
upper crust, according to a schematic classification 
which only considers four parameters: a ratio that de- 
fines the form of the ellipsoid associated with T, and the 
orientation of the three eigenvectors in space (i.e. the 
principal axes of the tensor) (Anderson 1951, Philip 
1987, Guiraud et al. 1989, Ritz 1991). This analysis will 
prove to be compatible with results of previous studies 
and it will serve to introduce the remaining sections. 

Definitions. (a) Let 21, 22 and 23 be the eigenvalues of 
T, such that 21 -< 22 -< 23, and let vl, v2 and v 3 be the 
corresponding eigenvectors. 

(b) Let Sl, S2 and S3 be unit vectors parallel to Vl, v2 
and v 3, respectively. 

(c) Let R = (22 - 23)/(21 - 23) be the parameter 
characterizing the shape ratio of the ellipsoid associated 
with T. 

In terms of stress, 21 , 22 and 23 represent the magni- 
tudes of the compressive, intermediate and tension axes 
(01, 02, tr3), respectively. In terms of strain, 21, 22 and 23 
represent the elongations of the lesser, intermediate and 
greater principal a x e s  (El ,  82, e3). 

Three different regimes are examined: 
(a) The regime where $1 is vertical (normal or exten- 

sive regime). 
(b) The regime where $2 is vertical (strike-slip). 
(c) The regime where $3 is vertical (thrust or compres- 

sive). 
For each regime five different tensors are considered 

whose shape ratios vary between two limit values: R = 0 
and R = 1. When R = 0, the eigenvalues 22 and 23 are 
equal; when R = 1, the eigenvalues 22 and 21 are equal. 
Stress and strain ellipsoids in space corresponding to the 
schematic classification are illustrated in Fig. 5. In the 
case of strain, the ellipsoids represent the final state of a 
spherical surface submitted to a homogeneous strain L 
-- T + I. All the eigenvalues of the operator L are 
positive. Notice that for the same tensor T, the associ- 
ated stress and strain ellipsoids are different. This results 
from having considered negative eigenvalues in the case 
of stress ellipsoids, since in general stresses in the upper 
crust are compressive (negative). Applied stress vectors 
are to be interpreted from the ellipsoid as vectors 
directed towards its centre. 

To describe integral curves in the different cases, the 
following definitions are used (Fig. 6). 

(a) Let pl ,  P2 and p3 be the points on the surface of the 
unit sphere, corresponding to vectors S1, $2 and $3. 

(b) Planes whose perpendicular is an eigenvector are 
called principal planes. A principal plane is defined by 
two non-parallel vectors that lie in the plane: Zij is the 
principal plane containing Si and Sj. 

(c) The intersection between the surface of the unit 
sphere and a principal plane Zq, defines a principal circle 
rij on the sphere. 

Figure 7(a) illustrates integral curves on the surface of 
the sphere for different tensors in extensive (NR),  
strike-slip (SS) and compressive (RR) regimes. These 
curves are oriented in the same direction as F~. Figure 
7(b) illustrates the projection of these curves in a nor- 
malized Mohr diagram, where the abscissa axis rep- 
resents Fn and the ordinate axis represents F~. In terms 
of stress, a point (Fn, F~) in the Mohr diagram indicates 
the magnitudes of the applied normal and shear stresses 
in a point of the sphere. In terms of strain, the couple 
(Fn, F~) represents the displacements of a point, perpen- 
dicularly and tangentially to the surface of the sphere 
(De Paor 1983). In all cases the integral curves on the 
sphere are symmetrical with respect to the principal 
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R=O R=.25 

0 b 
R=O Rz.25 R=.5 
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Rz.75 R=l 
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Fig. 5. Representation of. (a) stress and (h) strain ellipsoids, for different tectonic regimes. NR = normal regime; SS = 
strike-slip regime; RR = reverse regime; CT,, cr2 and a, indicate the compressive, intermediate and extensive principal stress 
axes; E,, e2 and ej indicate the minor, intermediate and major principal axes in terms of strain. Deformed ‘latitude’ and 
‘longitude’ lines were regularly spaced on the sphere before deformation. R = (A2 - A3)/(1, - I,) defines the ellipsoid’s 

shape ratio. 
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Fig. 6. Localization of points Pi, principal planes Xij and principal 
circles K~ on the surface of the sphere, as a function of the orientation 

of vectors Si(i, j = 1 , . . . ,  3). 

planes. Moreover ,  for a fixed R ratio the curves corre- 
sponding to the three regimes are equivalent if the 
sphere is rotated such that the principal directions Sl, S2 
and $3 are parallel. The  disposition of curves varies 
depending on the value of the ellipsoid shape ratio R. 

- - W h e n  R ~ 0 and R ~ 1, integral curves diverge from 

1321 

Pl,  go roundp2 and converge towardsp3 (Figs. 6 and 7a). 
In addition, they tend to become parallel to principal 
circles /(12 and r23. Points Pl ,  P2 and P3 are singular 
points where F~ is zero, and thus the orientation of the 
striation is not defined. Strictly speaking, Pl  corresponds 
to a diverging node,  P2 to a saddle point and P3 to a 
converging node. 

- - W h e n  R = 0, the integral curves are parallel to great 
circles whose axis of revolution is S1 (Fig. 7a). The 
curves diverge from Pl,  and converge steadily towards 
principal circle K23 (dashed curve in Fig. 7a) where F r is 
zero. Notice that in this case, curves are unstable with 
respect to variations of the shape ratio R close to 
principal circle r23: they are subperpendicular to K23 
when R = 0, and subparaUel to r23 when R > 0. 

- - W h e n  R = 1, the integral curves are parallel to great 
circles whose axis of revolution is $3 (Fig. 7a). Curves 
diverge from principal circle r12 (dashed curve in Fig. 
7a). where F~ is zero, and converge steadily towards Pa- 
In this case, the curves are unstable with respect to 
variations of the shape ratio R close to principal circle 

R= 0 R=.25 R=.5 R= .75 R= 1 

SS 

3 

® 

Fn li 12 13 
Fig. 7. Integral curves on the surface of the sphere (a) and in the Mohr diagram (b) for different tectonic regimes. These 
curves are parallel to vector F~ at every point on the sphere. Same conventions as in Fig. 5. Dashed lines indicate principal 

circles where F~ = 0. Explanations in the text. 
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K12: they are subperpendicular to K12 when R = 1, and 
subparallel to K12 when R < 1. 

Apart from the particular cases above, the disposition 
of curves changes progressively for different values of 
the R ratio. Close to the principal circle Kt3 curves are 
subparallei to K]3 for all values of the R ratio. 

Wallace (1951) plotted curves that are analogous to 
the integral curves that have been calculated analyti- 
cally: he represented on a stereographic projection 
curves that are parallel to the shear stress in every point, 
for several stress tensors in extensive regime. Some of 
the observations by Schrader (1988) on the orientation 
of striations on quasi-spherical pebbles are very consist- 
ent with the general disposition of the calculated integral 
curves. In particular, those where the three axes of the 
lineation field are perpendicular to each other (ortho- 
rombic field). 

Notice that integral curves in the Mohr diagram vary 
between two limiting curves (Fig. 7b): the curve passing 
by K13 , which corresponds to principal circle (21,23), and 
the curve passing by K~2 and K23, which corresponds to 
circles (21, 22) and (22, 23). The passage between these 
two curves is progressive. 

Potential funct ion 

The set of vectors F~ associated with tensor T, defines 
a vector field tangent to the surface of the sphere, and 
the magnitude of F~ defines a scalar field on this surface. 
It will be proved that in every point of this surface: 

F~ = ~ VstF, I, (13) 

where Vs is the gradient operator limited to the surface 
of the sphere. This equation states that the tangential 
component of F on the surface of the sphere (F0,  is the 
gradient of a potential function that is proportional to 
the magnitude of the normal component of F (Fn). Thus, 
vector field F T on the surface of the sphere is conserva- 
tive. The magnitude and direction of VslF,] in a point, 
are those of the algebraically maximum directional de- 
rivative of F~ on the plane tangent to the surface of the 
sphere. Thus, vector F~ is proportional to the maximum 
directional derivative of F~ on the surface of the sphere. 
Equation (13) can be proved directly by evaluating the 
gradient on the surface of the sphere, of the potential 
function [(1/2) IF.l] (see Appendix B). 

According to this equation, Fr is perpendicular at 
every point to the curves where F~ is constant. Thus, 
integral curves that are parallel to F~ in every point are 
also perpendicular to the curves of equal value of F, 
(iso-F~). This fact was observed by Wallace (1951), who 
noticed that iso-normal stress curves were perpendicular 
to the shear stress vector in every point of an angle- 
preserving stereographic projection. Vector F can be 
defined in any point of the surface of the sphere by 
means of the following equation: 

V = /;], eo + ½ ~TsIF,]. (14) 

Using the previous equations, iso-F, and integral 
curves have been plotted for the different tensors of the 

schematic classification set forth previously (Fig. 8a). 
These curves have also been projected on the Mohr 
diagram representation (Fig. 8b). The iso-Fn curves will 
be called equipotentials since the value of the potential 
function is constant along each one of them. 

The disposition of the equipotentials on the sphere 
can be used to estimate the magnitude of Fr in any point. 
Let A and B be two points belonging to an integral curve 
F, then the line integral of F~ along F is equal to the 
potential difference between A and B: 

t'F JB F r . d  7 =  F r . d Y = ½ ( F n . - F n A  ) = I A F n ,  (15) 
A 

where dy is a vector whose magnitude is equal to the 
differential of arc of curve F, which is parallel to F T. This 
integral can be interpreted as the flow of vector F~ along 
F between A and B. Knowing that vector field F r is 
conservative, the value of the integral is independent of 
the integration path between points A and B. If F~ is 
interpreted in terms of stress, the previous integral 
represents the work done by the shear stress between 
points A and B, and function [(1/2)Fn] represents the 
associated potential energy. If A and B belong to two 
contiguous equipotentials, then: 

f B F~ " dy  = l~m 7 = ½ AFn, 
A 

(16) 

where F~m is the mean value of F~ in the interval, and ), is 
the length of the interval. The potential difference being 
constant between two contiguous equipotentials, F~  is 
inversely proportional to the length of the interval. 
Thus, FTm is high in zones where contiguous equipoten- 
tials are close to each other. Conversely, F~., is low in 
zones where the distance between two contiguous equi- 
potentials is large. In Fig. 8(a) the zones where F~ is the 
lowest are located close to points Pl, P2 and P3 (Fig. 6). 
F~ is zero in these three points and thus F, remains quite 
constant around these points. Notice that the zone 
where F T is high changes with respect to the shape ratio 
of the ellipsoid. 

- -For  R ratios close to 0, this zone corresponds to a 
band of revolution about $1. 

- -For  R ratios close to 1, it corresponds to a band of 
revolution about S3. 

The most negative value (compressive in terms of 
stress) of Fn is reached in point p~, because integral 
curves diverge from this point. Thus, F,  increases when 
moving away from Pt, where its value is 2~. In the same 
way, the most positive value of F,  is defined in point P3 
(F n = 23) since integral curves converge towards this 
point. Thus, F ,  decreases when moving away from this 
point. When following an integral curve between Pl and 
P3, Fn is defined by an increasing function such that F,  
(21,23). In Fig. 8 the equipotential corresponding to F. 
-- 22 is defined by a great circle through S2. The orien- 
tation of this great circle can be calculated as a function 
of the ellipsoid shape ratio R in a strike-slip regime, with 

2 r = 21, 2,, = 23 and 2z = 22. 
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Fig. 8. Iso-Fn curves (i.e. vertical lines in Mohr diagram) and integral curves on the surface of the sphere (a) and in the 
Mohr diagram (b) for different tectonic regimes. Notice that these two families of curves are perpendicular to each other on 

the surface of the sphere. Same conventions as in Fig. 5. Explanations in the text. 

For these values in equation (8) and if F,  = 22, then: 

(21 COS2 ( ~ )  + 23 sin2 (q0) sin 2(0) + 22 COS 2 (O)  = 22 

=:~ 22 = 21 COS 2 (@) + 23 sin 2(~0) 

= (21 - 23) cos 2 (~)  + 23 

=~ R (22 -- 23) - - c°s2 (q0- (17) 
(21 -- 23) 

This equation permits the calculation of the azimuth 
with respect to $1, of the great circle where Fn = 22 in a 
strike-slip regime. This great circle is particularly inter- 
esting because integral curves intersect it perpendicu- 
larly. Thus, the orientation of F~ in space is constant for 
all the planes that are tangent to the sphere along this 
great circle, independently of the orientation of the 
tensor. This property is in agreement with results by 
Vergely et al. (1987), who plotted on a stereonet curves 
indicating the orientation in space of the theoretical 

striation for planes whose azimuth or dip varies, the 
other parameter remaining constant. For a given stress 
regime, they noticed that the different curves inter- 
sected in two points (focus) situated in the plane (el, tr3). 
These two points indicate the orientation of the theoreti- 
cal striation for fault planes of variable orientation that 
share a common line (the striation). These authors 
propose a formula equivalent to equation (17). In a 
strike-slip regime, the great circle where F,  = 22 is such 
that F~ is horizontal, because integral curves are perpen- 
dicular to it (Fig. 8a). This great circle separates a 
domain where the direction of F~ is strike-slip reverse, 
from a domain where it is strike-slip normal. These 
domains correspond to two well defined zones in the 
Mohr diagram representation: 

--strike-slip reverse domain if Fn • (21, 22); 
--strike-slip normal domain if Fn • (22, 23). 
These domains vary as a function of the R ratio: if R is 

dose to 0, the great circle will be close to K23 and the 
strike-slip reverse domain will be larger; conversely, if R 
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Fig. 9. Representation of the horizontal plane H, tangent to the 
sphere in point p.. (,Lr, Ay) = Cartesian co-ordinates of a point on the 

sphere, localized near singular point p:. 

is close to 1, the great circle will be close to K~ 2 and the 
strike-slip normal domain will prevail. 

These results are consistent with the analysis on fault 
reactivation by Tajima & CrlErier (1989) who proposed 
a diagram in which the type of faulting (normal, reverse 
and strike-slip) is related to a ratio between stress 
deviators and to fault plane azimuth. The limit between 
normal and reverse faulting components in strike-slip 
stress regime is given by an analogous equation. 

where symbol A indicates that the size of variables is 
small. Using equation (8), Fn can be expressed close to 
p~ by replacing sin 2 (AO) and cos 2 (AO) by their series 
developments, keeping only the terms whose order is 
less or equal than AO2: 

Fn = (2x cos 2 (q~) + 2y sin 2 (q~)) sin 2 (AO) 

+ )`, cos-' (AO) 

Fn = ()`x cOs2 ((P) q- )`v S inz (q~)) AO 2 

+ ),z (1 --- AO2). (!9) 

Using variables Ax and Ay, it is obtained: 

F.  - )`z = AO 2 cos e (~0)(2x - 2.,) 

+ AO2 sin2 (q~)(2v - )`z) 

_ Ax- '  Ay___~: _ Ax 2 + Ay 2 (20) 

[2~5--~j [2 , , -  2:J 

This last equation corresponds to a second degree 
curve or conic (Bougrov & Nikolski 1983), such that the 
ratio between A and B is constant for every value of F.: 

.4 ),. - 2~ (21) 
B 2.,.- 2. 

Analysis o f  singular points' 

Observations on deformed conglomerates by several 
authors confirm the existence of singular points on the 
surface of striated pebbles. Dissolution poles from 
where striations diverge were described by Estevez et al. 
(1976) and Campredon et al. (1977). Combes (1984) 
observed non-striated 'neutral bands' on the faces of the 
pebbles that are perfectly parallel to the shortening 
direction. These 'neutral bands' clearly correspond to 
the principal circle K23 on the surface of the sphere, for a 
revolution ellipsoid about $1 (Fig. 7). Casagrande 
Fioretti (1985) pointed out analogous observations in a 
stress regime close to radial compression, where he 
observed horizontal stylolitic bands. Finally, Schrader 
(1988) established the correlation between the location 
of singular points and different strain paths. 

Since these singular points are clearly identifiable in 
the field, it is worth understanding their significance. 
Thus, analytical expressions will be calculated to de- 
scribe integral curves and equipotentials near singular 
points. To do so, singular point Pz, localized in the 
intersection between the vertical axis S~ and the surface 
of the sphere, is studied for the different tensors in the 
schematic classification (Figs. 5 and 8). Near p~ the 
surface of the sphere can be approximated by the hori- 
zontal plane H, tangent to the sphere at p~ (Fig. 9). 

The co-ordinates on the horizontal plane H, of a point 
p of the surface of the sphere, close to Pz, can be 
calculated from angles O and q~: 

z~c = AO cos (q~), Ay = AO sin (q)). (18) 

This result is not surprising since Fn is defined on the 
surface of the sphere by a quadratic form (Arnold 1988, 
Chap. 2, Section 12-4), that can be expressed in tensor 
notation by Fn = Tijninj. 

Using the same approximations, integral curves near 
Pz are calculated from equation (12): 

tan (O) = AO = kl [sin (¢~)[ Rx-l] COS (~)[--R~ 

kl > 0 ~  

I Ay IR~-tl AX I-R~ 
a o  : k, Y 6  S-6 

= k, aO = >  

~Xy = _+k21~] -R/~I- R) 

: ± k2 lz~k~[ 0,, -;~z>/(A,-2D 

= +k2i?=txl Am, k 2 > 0. (22) 

This last equation corresponds to a power  law, which 
is perpendicular in every point to the conic curves 
calculated previously. 

Figure 10 illustrates the equipotentials and integral 
curves near Pz, for the different tensors of the schematic 
classification. The potential difference between two con- 
tiguous equipotentials is constant. Table I indicates the 
values of parameters A and B as a function of eigen- 
values 21, 22 and 23, for the different tectonic regimes. 

(1) In extensive regimes, pz corresponds to singular 
point pl ,  Fn > ),1 near p~ (Fig. 8) and A - B > 0. Thus, 
conic curves correspond to ellipses whose long axis is 
parallel to Sx and whose small axis is parallel to Sy, their 
half-lengths being V A  and ~v/B, respectively. 
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Fig. 10. Integral curves and equipotentials near singular point pe, for different tectonic regimes. Notice that Pz 
corresponds to a diverging node, a saddle point or a converging node, depending on the tectonic regime. 

Equation (22) describing integral curves corresponds 
to a power law whose exponent  A / B  -> 1. If22 = )-3, then 
A = B, and consequently the ellipses reduce to circles, 
and integral curves are straight lines placed radially 
around pl .  Conversely, when 22 ~ 21, then A >> B, and 
the ellipses are more and more elongated. In the limiting 
case where 22 = 21, the conic corresponds to a couple of 
straight lines parallel to the Sx axis, and integral curves 
correspond to straight lines parallel to the Sy axis. 

(2) In a strike-slip regime, Pz corresponds to singular 
point P2- Three  cases are considered depending on the 
value of F,  near Pz. 

(a) I f  F.  < 22, then B < 0 < A, and the conic 
corresponds to an hyperbola whose focal axis is Sx. 

(b) If F ,  > 22, then A < 0 < B, and the conic 
correspond~ to a hyperbola whose focal axis is Sy. 

(c) If F,  = 22, the equation of a couple of convergent 

lines whose slope is ~ ,  is obtained by multiplying 
the conic equation (20) by ( F . -  22): 

Fn - 22 = (21 _ 22)~f2 + (23 _ 22 ) ~y 2 =  0=:~ 

21 - 22 (23) 

This pair of straight lines define the asymptotes of the 
two families of hyperbolas mentioned previously. 
Notice that if 22 ~ 23, the asymptotes tend to be parallel 
to the Sy axis, since ~ ~ o0. In the same way, if 
22 ~ 21, the asymptotes tend to be parallel to the Sx axis, 
since X / -  B/A  ~ O. Integral curves near P2 correspond to 
a power law whose exponent  A / B  < O. 

(3) In compressive regime, Pz corresponds to singular 
point p3. Moreover ,  Fn < 23 nearpz,  and B >- A > 0. The 
conic curves correspond to ellipses whose long axis is 

Table 1. Parameters A and B defining integral curves and equipotentials near Pz, as a function 
of eigenvalues 21,22 and 23, for different tectonic regimes. 

Regime Pz 2x 2y 2 z A B A/B 

Extensive Pl  22 23 ;tl F .  - 21 F .  - 21 23 - 21 
22 - 21 23 - 21 22 - 21 

Strike-slip P2 21 23 22 F .  - 22 F n - 22 23 - 22 
21 - 22 23 - ,~2 2 1  - -  22 

Compress ive  P3 21 22 23 Fn - 23 Fn - 23 22 - 23 
21 -- 23 22 -- 23 21 -- 23 
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parallel to S v and whose short axis is parallel to S x, their 
half-lengths being ~//3 and V~A, respectively. Equation 
(22) describing integral curves corresponds to a power 
law whose exponent 0 -< A/B  -< 1. If22 = 21, then A = B, 
and consequently the ellipses reduce to circles, and 
integral curves are straight lines placed radially around 
P3. Conversely, when 22 ---, )~3, then B >> A, and the 
ellipses are more and more elongated. In the limiting 
case where 22 = 2~, the conic corresponds to a pair of 
straight lines parallel to the Sy axis and integral curves 
correspond to straight lines parallel to the Sx axis. 

In the different cases presented in Fig. 10, the distance 
between two contiguous equipotentials increases as we 
get closer to the singular point p~. This means that the 
magnitude of F~ decreases as we get closer to the 
singularity, where F~ is zero. 

(4) bz an extensive regime, the half-length of the short 
axis of the ellipses corresponding to a given equipoten- 
tial, is constant for different values of the R ratio. 
Indeed, nearp=, the short axis of the ellipses is tangent to 
the principal circle K31 (Fig. 6). The magnitude of F~ in 
any point of K3~, is independent of the shape ratio R (Fig. 
8b). The half-length of the long axis of ellipses corre- 
sponding to the same equipotential increases as a func- 
tion of the R ratio because, near p~, the long axis of the 
ellipses is tangent to principal circle KI~ - (Fig. 6). The 
magnitude of F~ in any point of x~2, is proportional to 
( l - R )  and it decreases when R increases (Fig. 8b). 
Analogous results can be proposed in compressive 
regime, for equipotentials near p=. 

(5) In strike-slip regimes, the equipotentials corre- 
spond to hyperbolas. The hyperbolas whose focal axis is 
z~c, and whose potential difference with respect to p ,  is 
constant, are such that the distance between the vertex 
of the hyperbola and the origin increases as a function of 
the R ratio. 

In fact, near p~, the focal axis of these hyperbolas is 
tangent to principal circle K~2 (Fig. 6). Moreover,  for 
each value of the R ratio, the ellipses in extensive regime 
intersect the Ax axis in the same points as the hyperbolas 
whose focal axis is Ax. 

The hyperbolas whose focal axis is Ay, and whose 
potential difference with respect to p= is constant, are 
such that the distance between the vertex of the hyper- 
bola and the origin decreases as a function of the R ratio. 

In this case, the focal axis is tangent to principal circle 
x23 (Fig. 6) and the magnitude of F~ in a point of x23, 
increases proportionally to the value of R (Fig. 8b). 

For a fixed value of the R ratio, the hyperbolae whose 
focal axis is Ay and the ellipses in compressive regime, 
intersect the Ay axis in the same points. 

GRAPHICAL DETERMINATION OF THE STRESS 
TENSOR SHAPE RATIO FROM FAULT SLIP 

DATA 

One possible application of the theoretical analysis of 
striations on the sphere consists in estimating stress 

parameters from striated microfaults, by identifying 
each fault plane with its pole on the surface of the sphere 
(Fig. 2) (i.e. Wallace 1951, Aleksandrowski 1985, 
Schrader 1991). The striation can be represented by 
means of a small vector tangent to the surface of the 
sphere on the pole of the fault plane (Fig. 4a). 

In this section a graphical method is presented to 
estimate the stress tensor shape ratio (i.e. R = (02 - 
~0/(cq - ~ ) )  from the analysis of striated faults plotted 
on the surface of the sphere. This method supposes that 
the stress tensor is homogeneous at the outcrop scale, 
and that slip direction along a fault plane is parallel to 
the shear stress (Wallace 1951, Bott 1959, Carey & 
Brunier 1974). 

As explained below, prior to applying this method it is 
necessary to determine the orientations of the principal 
stress directions. These orientations can be estimated 
from other graphical methods (Anderson 1951, Arthaud 
1969, McKenzie 1969, Pegoraro 1972, Angelier & 
Mechler 1977, Etchecopar 1984, Aleksandrowski 1985, 
Lisle 1987, 1992, Vergely et al. 1987, C616rier 1988), or 
by means of microstructures such as tension gashes and 
stylolitic peaks (i.e. Arthaud & Mattauer 1969). 

Method 

To illustrate the principle of the graphical method, in 
Fig. 11 are plotted Oll a Wulff stereonet (upper hemi- 
sphere), integral curves that are parallel to the applied 
shear stress for different strike-slip stress tensors (Fig. 
7). The orientations of the principal axes in Fig. 11 are 
fixed, while the stress tensor shape ratio R varies from 
one stereonet to another. Remember  that the orien- 
tation of the integral curves at a point m on the stereonet 
indicates the orientation of the applied shear stress on a 
fault plane whose unit normal vector passes by m (Figs. 3 
and 4a) (this fault plane is tangent to the upper hemi- 
sphere at m). For each value of the R ratio are plotted 
two great circles/~1 and It2 (i.e. two meridians) which 
correspond to the equipotentials that intersect 02 (i.e. 
2:, Fig. 8). The angle ~ between these great circles and 
principal axis o t is given by equation (17). Strike-slip 
reverse domains have been shaded on the stereonets and 
in the Mohr circle diagrams. 

The graphical method to calculate the shape ratio 
consists of reconstructing integral curves by plotting 
fault slip data on the surface of the sphere. If the 
principal directions are known (i.e. by means of other 
graphical methods), then it is possible to estimate the 
parameter  R by drawing manually great circles ~ and 
u 2. This procedure is illustrated by means of a theoreti- 
cal example. 

Assume that a striated fault plane population corre- 
sponding to a single tectonic phase has been measured. 
In Fig. 12(a) the striated faults are plotted on a Wulff 
stereonet (lower hemisphere). Arrows indicate slip 
direction of the hangingwall with respect to the footwall. 

The determination of the stress tensor shape ratio is 
subdivided into several steps. Each step is illustrated for 
the whole fault set as follows. 
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Fig. 11. Wulff projection (upper hemisphere) of integral curves and 
Mohr diagrams for different stress tensors in strike-slip regime. Curve 
orientation at any points is parallel to the applied shear stress on a 
plane that is locally tangent to the hemisphere. RF = reverse faulting 

(shaded regions); NF = normal faulting. 

(1) The orientation of the principal stress directions is 
estimated by means of another graphical method (e.g. 
the right-dihedra method), or from microstructures. 

(2) Fault planes and their corresponding slip vectors 
are rotated such that the intermediate axis 02 becomes 
vertical (Fig. 12b). 

(3) The pole of each fault plane is then plotted on the 
stereonet (upper hemisphere) (Fig. 12c). A vector indi- 
cating the local slip direction on the tangent plane is 
plotted from each pole. The angle between the strike of 
the tangent plane and the slip vector in the stereonet is 
equal to the rake a of the striated fault (Figs. 13a & b) 
(this results from the angle-preserving property of the 
Wulff projection). 

(4) Curves that are locally tangent to the slip vectors 
a r e  reconstructed manually (Fig. 12c) (they should be 
well defined if enough fault data are available). These 
curves are identified with the integral curves presented 
by supposing that slip direction is parallel to the applied 
shear stress. 

(5) Two symmetrical lines corresponding to great 
circles/~1 and/~2 are drawn manually. These lines should 
intersect integral curves perpendicularly. 

(6) The angle $o between the great circle bq or/~2 and 
the horizontal axis th, allows to estimate graphically the 
shape ratio R by means of the function plotted in Fig. 
13(d) which corresponds to equation (17). 

In this particular example $o = :t/4 and the stress 
shape ratio R = 0.5. 

Note that when fault plane poles are localized in 
principal circle (01, as) (i.e. fault planes are vertical in 
strike-slip reference frame), it is not possible to deter- 
mine the shape ratio R. In fact, the shear stress orien- 
tation is independent of the shape ratio in principal circle 
(01, 03) (Figs. 7 and 11). Fault plane poles are frequently 
located in this principal circle when fresh failures occur 
within intact rocks (Anderson 1951). 

This method allows the identification of fault planes 
that are not compatible with the stress tensor solution. A 
simple criteria is to test whether the fault slip vector is 
oblique or tangent to the integral curves constructed 
from the remaining faults. 

It is also possible to determine graphically the interval 
of potential fault slip orientation corresponding to shape 
ratios R between 0 and 1 (Fig. 13c) (Wallace 1951, Lisle 
1987). For R = 0 and R = 1, the fault slip vector (plotted 
from the pole) is tangent to principal circles around o 1 
and e3, respectively. If slip orientation is not in the 
interval determined graphically, fault movement is not 
compatible with the orientation of the stress axes. 

CONCLUSIONS 

The orientation of striations on the surface of a rigid 
spherical body linked to a symmetrical tensor (which can 
represent either the stress tensor around the sphere or 
the displacement tensor between the pebble and the 
matrix), depends on four parameters: the orientation of 
the principal axes and a ratio that characterizes the form 
of the ellipsoid. 

Thus, the analysis of a single striated pebble in terms 
of stress permits the estimation of the local value of these 
parameters in the conglomerate. The interpretation of 
striated pebbles in terms of strain provides a method for 
estimating three-dimensional strain parameters, suit- 
able when deformations are small. 

It has been supposed that the stress or displacement 
tensor is homogeneous around the sphere. This hypoth- 
esis should hold if deformations are small and if pebbles 
in the conglomerate are not too closely packed. If 
pebbles are close together, stress concentrations might 
be expected at contact points between pebbles (i.e. near 
singular points) (McEwen 1981). 

Calculated integral curves that are parallel to stri- 
ations at every point, and equipotentials that are per- 
pendicular to the integral curves, are well suited to 
describe the topology of the striation vector field on the 
sphere (i.e. size and orientation of striations in terms of 
strain). The interpretation of these curves in terms of 
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Fig. 12. Wulffprojection of fault planes, striation vectors and principal stress axes (ol = circle, a z = square, a 3 = triangle). 
Arrows indicate movement of hangingwall with respect to footwall. Low. hem. = lower hemisphere; Up. hem. = upper 
hemisphere. (a) Theoretical data. (b) Data are rotated so that o 2 becomes vertical and o 1 is oriented E-W. (c) Striation 
vectors are plotted on the poles of the planes (see Figs. 13a & b). Dashed lines separate reverse faulting (shaded region) 

from normal faulting. Notice that arrows are locally tangent to integral curves. 
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Fig. 13. (a) Wulff projection (lower hemisphere) of a fault plane and its striation vector, t~ = rake of the striation measured 
on the fault plane. (b) Construction of the slip vector on the pole of the plane in a Wulff projection (upper hemisphere), po 
= pole of the fault plane; fs = dotted line parallel to the fault strike. The orientation of the slip vector on the pole indicates 
movement on the plane that is tangent to the hemisphere at po. (c) Slip vectors on the pole for different values of stress 
tensor shape ratio R. ml = great circle around 01 axis, passing by the pole; m3 = great circle around a3 axis, passing by the 
pole. (d) Plot of the function defining the relation between the angle ~o (Figs. 11 and 12) and the stress tensor shape ratio R 

(equation 17). This curve allows to estimate graphically the parameter R from the value of ~o. 

s t ress  is usefu l  fo r  ana lys ing  the  k i n e m a t i c s  o f  f au l t ing  as 

a f u n c t i o n  o f  t he  s t ress  r e g i m e  and  o f  fau l t  p l a n e  o r i en -  

t a t i on :  t he  m a g n i t u d e  and  the  o r i e n t a t i o n  o f  the  s h e a r  

and  n o r m a l  s t ress  v e c t o r s  a re  eas i ly  v i sua l i zed  by m e a n s  

o f  i n t eg ra l  c u r v e s  a n d  e q u i p o t e n t i a l s .  
T h e  analys is  o f  i n t eg ra l  c u r v e s  and  e q u i p o t e n t i a l s  

c lose  to  s ingu la r  po in t s  a l lows  d e t e r m i n a t i o n  o f  t he  

o r i e n t a t i o n  o f  t he  s t r i a t ions  as a f u n c t i o n  o f  t he  t e n s o r  

s h a p e  ra t io ,  in t he se  u n s t a b l e  z o n e s .  T h i s  ana lys is  shows  

tha t  t he  i n f o r m a t i o n  a v a i l a b l e  f r o m  the  s t r i a t i on  p a t t e r n  

c lose  to  any s ingu la r  p o i n t  is suf f ic ien t  to  c h a r a c t e r i z e  t he  

t h r e e - d i m e n s i o n a l  s t ress  o r  coax ia l  s t ra in  r e g i m e .  

T h e  a p p l i c a t i o n  o f  this t h e o r y  to  t h e  analys is  o f  faul t  

slip d a t a  m a k e s  it poss ib l e  to  e s t i m a t e  g r aph i ca l l y  t h e  
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stress shape ratio, once the principal stress directions 
have been determined (i.e. by means of other graphical 
methods). 
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A P P E N D I X  A 

In this Appendix integral equation (11) in the text is solved to obtain 
an analytical formula for integral curves on the surface of the sphere. 
Equation (11) is given by: 

dO /[ cos!,?ld+ (AI) 
c o s  ( O )  s in = j 

To evaluate this integral the following primitives are calculated: 

(a) ' ~ d / 3  ~ by substituting 

u - sin ( i l l  du = cos (fl) d/3 

cos (/3) df l  'du • ~ = ~ = in tul + k = In lsin (/7)1 + k, 

/3 ~ n~. (A2) 

dfi ~ by substituting 
(b) cos (fl) sin (/3) 

2u 
u = tan (/7), sin (2/3) = 1 + ~ u  ' 

dtt 

. cos(/7) sin(fl) - 

= In lul + k = In Itan ( /3)1 + k, 

/3 ~ ~/2 + n~. 

Replacing these expressions in the integral equation gives: 

In ttan (O)l = R, In Itan (q~)l - In ]sin (q~)l + k 

- In i klltan (q~)[u,_] k I > 0, 
/ Isin(cp)l J '  

(A3) 

tan (O) = -+k, [sin (q)l n ' - I  Icos (q~)l -n~ 

= -+kl Isin (@)l t~'-~)/~a'-~') 

× !cos(~0)[0. ;,,)lo.:~a = ~(cp), (p ~ n~12, 

O = arctg (/~(q~)) = q~(q0, (A4) 

where the function q0(q~) defines integral curves on the surface of the 
sphere. 

This equation can be checked by showing that (Arnold 1988, Chap. 
1, Section 1-4): 

1 dq~(¢) 1 dq~(~O) _ v(q~(q~),¢), (A5) 
sin (O) d~ = v(O, q~) ~ sin (q~(q0----~ d - ~  

where v(O,q~) is defined by equation (9) in the text. 

A P P E N D I X  B 

In this Appendix equation (13) in the text is proved, which states 
that 

F, = ~ VslF,,i, (B1) 

where V s is the gradient operator limited to the surface of the sphere. 
This formula can be evaluated by calculating the gradient on the 

surface of the unit sphere, of the potential function [(1/2)iF, I]. This 
function can be expressed in spherical co-ordinates by means of 
equation (8) in the text: 

= ~[(2 x cosZ(q0 + 2, sin2(q~)) sin 2 (O) + 2: cos z (O)]. (B2) 

The two components of the gradient that are tangent to the surface of 
the sphere are given by: 

" ps in  (O)Oq~ ] '  

wherc p = 1. 
It can easily be shown that: 

0F~t' = sin (O) cos (O)() h cos2(q~) 
2t~O 

+ 2y sin 20P) - ~.z) = F~o (B4) 

OF'~p = (2 , . -  20  sin (O) cos (q~) sin 0P) = F'e~, (B5) 
2p sin (O)0q~ 

where F'co and F'e~ are the components of F~ in directions eO and eta, 
respectively (equation 8 in the text). 


